
MMKCCHROOPPRROOEEESSSSOORR AANNIB

CCOOMMPPUUTTEERR AAPRCCHHHTTEEETTUURREE

UNIT - 3

memory

feedbackkorrections : vibha@pesu.pes.edu VIBHA MASTI

MEMORY

- Processor speed vs memory - gap

• Registers : reside in CPU
,
faster to fetch from / write to ;

limited in number

CPU

DRAM

HD)
Ll L2 (3 SSD

c
C c

a a a

c C c

h h h

e e e GB TB

KB GPRS MB MB MB

General c

speed
Purpose
Registers s

capacity

Locality of Reference

1) Temporal Locality
° set of instr likely to be referenced soon

°

eg: looping

2) Spatial locality
° if fetching from memory, fetch from other nearby locations
.

eg : array elements

word block

transfer transfer

> s main
CPU cache

c c
memory

cache mapping technique

D Direct mapped cache

2) set associative mapping

3) Fully Associative mapping

GENERAL ORGANISATION of CACHE

set 0
VALID TAG 01 . . . n - I 3 line /block
VALID TAG O '

- - -
n - I

3 line (block

set 1
VALID TAG 01 . . . n - I 3 line (block
VALID TAG O '

- - -
n - I

> line / block

:
-

Sef n
VALID TAG 01 . . . n - I 3 line / block
VALID TAG O '

- - -
n - I

> line / block

. compartmentalised into sets of 2 Crows)

1) Direct Mapped cache

0 I 2 3 4 16 20 31 (blocks)

main 144 . . .

'

Y
'

H
memory 4,4, I.

" '

%
- - -

tent ion : evict

0 I 2 3h45 6 7
y hot

cache 1/1 44 compartmentalised

memory 4
, f, §, andexits

° (block no
.
) mode (no . of sets) blocks)

• leads to contention
. each line treated as block (set
• aka line mapping technique
° More than one block of memory mapped to one block

in cache

2) Set Associative Mapping
0 I 2 3 4 16 20 31

Leaming "4%
,

' - -

"
' % - - -

contention :
evict#

u%÷cache 41
memory 4" "

Seto set I set 2 Set 3

° improvement over direct
• flexibility to place block anywhere in set
°

tetter utilisation of space
block no

.
) mode (no . of sets)

3) Fully Associative mapping

0 I 2 3 4 16 20 31

main

memory %% - - - % . - % - - -

random ; can go anywhereL
L

V

O l 2 3 45 6 7

cache 4 Y Y Y
memory I f Y l

t t k k

-

any block of main memory mapped anywhere on

cache
- search is slower

BITS NEEDED TO ADDRESS MAIN MEMORY

°

eg : 16GB RAM : 24×230 = 34 bits

Direct mapped cache

← offset

block block main memorytag number offset address

34 bits

• valid 0 : Staley junk data

set Associative mapping
← offset

(no . of
set block/ words in

tag number line offset block)

34 bits

Fully Associative Mapping
← offset

tag block
offset

34 bits

Q : A 4-way set associative cache memory unit with a

capacity of 16 KB is built using a block size of 8 words
.

The word length is 32 bits
.

The size of the physical
address space is 4GB . How many bits are required
for the tag field?

main men = 4GB 14

cache size = 16 KB = 2 bytes
block size = 8×32 bits = 32 bytes = 8 words

size of meme 4×230 = 23
'

i
. 32 -bit address for main men

size of set = 4×8×4 = 2
?

bytes

10 7
i
. no of sets = 16 KB = 1/6×2 = 2

4×8×4 1/6×23
↳ block

block size = 8×4 = 32 bytes = 25 bytes

block offset -- word = 5 bits

.

-

. 7 bits for sets

5 bits for word

.
: 20 bits for tag

tag set word

20 7 5

(7

32 bit

Q : Size of MM = 64 K words
,
cache = 128 blocks

,
16 words) block

,

I word = 4 bits
,
2-way set associative mapping. find no . of

bits for tag , set , word .

memory
-

- 26×210=2
"
words

I set = 2 blocks = 2×16 words = 32 words

I block = 16 words ⇒ 4 bits offset

10 16

main memory = 64×2 words = 2 words
= 16 bit addressing

cache → 128 blocks = 64 sets = 26 Sets

i
. 6 bits for set

tag set word

6 6 4

(s

16 bit

Q: consider direct mapped cache 512 KB
,
block size 1h13 ,

7 bits in tag . find size of main memory . Word
= I byte.

cache size = 512 KB = 29 bytes

block size : 2
"

bytes ⇒ 10 bits for offset

no of blocks = 512 '
- 29 blocks

⇒ 9 bits for block

main memory address = 7-1101-9 = 26 bits

i - size of main memory = 220×26 = 64 MB

Q : consider a 4-way SAC with block size = 4 KB
.
Size of

MM = 16 GB .
10 tag bits . Find cache size .

size of MM = 16×230 = 23" bytes

.

-

- address = 34 bit

tag bits = to bits

size of block = 4 KB i 22×210 a 2
"

bytes

.

-

. block offset -- 12 bits

.

'

. Set no
.

bits = 34 - CIO -1127
= 34 - (22) = 12 bits

.

'

. no of sets = 212

-

: size of cache = 2
"
x 4x4 KB

= 212×22×22×210

= 226 bytes

= 64 MB

size of cache = 64 MB

Q: cache = 512 KB
, tag -_ 10

,
set = S blocks / set

main memory
= ?

cache size = no . of sets x 8 x size of block

no of sets = 2
"

x : set bits

size of block = 2b
y : offset

bits

29×210 = arty -13

19 = Icty -13 ⇒ kty= 16

size of memory address = to txty

-
- 26 bits

.
: size of main memory

= 226 -

- 64 MB

d: A computer system uses 16 bit memory
,
direct

mapped 2143 cache
,
64 bytes / block . Assume word

is I byte .

Calculate tag , block , word bits

block size = 64 bytes = 26 bytes

i. block offset = 6 bits -
- word

no . of blocks = 2×2
"

= 25

26

i. block = 5 bits

tag-- 16-(5+6) = 5 bits tag

tag block word

5 5 6

d: A computer system uses 16 bit memory
,
2-way set

associative
,
2143 cache , 64 bytes / block . Assume word

is I byte .

(a) Calculate tag , block , word bits

(b) Processor reads data sequentially from the following
addresses : 128

, 144 , 2176 , 2180 , 128 , 2176 .
Indicate hits and

misses

car cache = 2×210=2 " bytes

set size = 128 bytes = 2
?

no
.
of sets = 2 = 24 = 16 Sets

27

i. set bits -- 4

no . of words (block = 64 words -
-

2b

i. word bits -

- 6

i. tag bits
-
- 6

tag set word

6 4 6

(b) 128
, 144 , 2176 , 2180 , 128 , 2176 in base - 10

tag set offset (word

I. (128)
,o
= 000000 0010 000000

2 . (1447,0
= 000000 0010 010000

3 . (2176710 = 000010 0010 000000

4- (21807,0 = 000010 0010 000100

5 ' (1287,0 = 000000 0010 000000

G- (2176)
,
= 000010 0010 000000

I . will be miss ; tag for first block of set

0010 is set to 000000

2
.

hit; set 0010 , block 1 tag is 000000

3
,
miss ; set 0010 ,

block 2 tag = 000010

4- hit

s . hit

6 . hit

VALID BIT

. Provided for each block

. Valid -- o when power turned on (stale invalid memory)
° Valid -- I when block loaded

° If data on disk changes, main memory updated , cache
valid bit set too

write hit

4) Write Through Protocol
(2) Write Back Protocol

47 Write through Protocol
- both main memory 4 cache updated simultaneously
. ensures consistency
. increased latency

←
j

c-
c-

cache

Cpu main

memory

(2) Write Back Protocol
°

change only cache

•

dirty bit / modified bit flag in cache set to

1

• while sending out dirty block (victim block)
,
main

memory is updated

I dirty
✓ / bit

c-

"

c-

cache

Cpu main

memory

ADVANTAGE OF WRITE BACK

e Not all write operations need to access memory ; lower

latency

• Several writes in same cache block : force memory write

only once at writeback time

Cache Miss
° Data not present in cache

• Miss penalty
• Latency : time req to retrieve first word of block
° Bandwith : time req to retrieve rest of block

read miss

° Load through) early restart - do not wait for entire block to

be transferred

write miss

• Fetch and then overwrite in cache

(1) Write No Allocate
° Write directly to memory without affecting cache
° good if same location not needed soon

. valid bit set to 0

(2) Write Allocate

° load newly written data into cache

• easily accessible in cache

• same data needed again

Types of Misses

D compulsory Miss

o when cache initially empty , compulsory miss
2) Capacity Miss

o

3) Conflicting Miss
• set associative mapping
. Due to constraints

,
even if blocks empty

CACHE COHERENCE

changes

-C
g

dirty→
f bit

→
I

c-

cache

Cpu main disk
memory

• disk and memory data changes and writeback protocol
used

• cache data might have also changed (dirty bit)

• copies of data different

° option : force writeback before main memory is updated
from disk

write Buffer

°

processor waiting for writing into main memory: time

consuming

•

processor places write request into buffer , continues execution

° future access to data : access from buffer

• write through

Q : consider DMC with 8 cache blocks
. Memory block requests

Are 4 , 3,25, 8 , 19 , 6 , 25, 8 , 16 , 35, 45, 22 , 8 , 3 , 16 , 25,7 , which

memory blocks will be present in the cache at the end of

the sequence ? Also calculate hit Inniss ratio
.

o 8+6816 8 miss -38 hit → 16 miss -78 miss → 16 miss

I 25 25 miss → 25 hit -725 hit

2

3 3- 19/3/53 3 miss → 19 miss → 35 miss → 3 miss

4 445 4 miss → 45 miss

5

6 6/22 6 miss → 22 miss

7 7 7 miss

hits =3 misses = 14 hit ratio = 3/17

Q : consider 2WSAM with 8 cache blocks
. Memory block requests

Are 4 , 3,25, 8 , 19 , 6 , 25, 8 , 16 , 35, 45, 22 , 8 , 3 , 16 , 25,7 , which

memory blocks will be present in the cache at the end of

the sequence ? Also calculate hit Inniss ratio
. CLRU)

4/16 4 miss → 16 miss → 16 hit
O - - - - -

8 8 miss → 8 hit → 8 hit

25 25 miss -725 hit -725 hit
l - - - - -

45 45 miss

6 6 miss
2 - - - - -

22 22 miss

3/3/57 3 miss → 35 miss → 7 miss
3 - - - - -

19/3 19 miss → 3 miss

hits -- 5 misses = 12 hit ratio = 5/17

Replacement Algorithms

• Direct mapped cache : memory block occupies fixed spot ;
replacement strategy trivial

° Fully associative
,
set associative need strategies

(1) Random

° replace random block from cache

(2) Least Recently Used CLRU)
° replace block that has not been used for longest time
. expensive
'

slight randomness introduced for better performance

(3) First In First out CFIFO)
° evict block which has been in the cache longest

(4) Least Frequently used CLFU)
. evict block that has been used least frequently

CACHE PERFORMANCE

^
° Ideal : all requests are hits

° Realistic : not 100.1 .
E processor
G

E n

° How helpful cache is t widening-±°

Memory wall v memory

-
>

. Locality of reference : lot of code
yeartakes up 90.1. of CPU time

-

temporal (looping)
- spatial carrays)

cache performance - ideal

CPU
time

= (Puccoon cycles
X CPU

clock cycle time
perfect cache

cache Performance - realistic

(+ memory stall cycles)X (Phou cycle time
CPU
time

= CPU
clock cycles

)
depends on

'

no . of misses
Mem stall cycles x miss penalty

Mem stall = Ic x misses

cycles 1 instruction

× miss penalty

instruction

Count

mem stall = IC x Mem accesses × misses × miss penalty
cycles instruction meayYe%

IF → ID → IE → MEM → WB

d d
instruction data
cache cache

mem stall = IC x Mem accesses × miss rate × miss penalty
cycles instruction

Cpl - cycles per Instruction

Cpl = CPU clock cycles for program
instruction count

O : Assume we have a computer where CPI =L -o when all

memory accesses hit the cache . Only data accesses are load

and store
,
total about soy . of instructions

.

Miss penalty
is 25 CC

,
miss rate 2-1 . . how much faster would comp be if

all instructions were cache hits?

time CPU
idea,

= KPK
,
t Mem stall) x clock cycle time

= (CPI x IC) x clock cycle time

= Icx clock cycle time

time Urea ,
= CCP Ucc + Mem stall) x clock cycle time

Mem stall i IC x Mem access x miss penalty x miss rate

instr

= IC x 1.5×25×0.02 = 0-75 IC

time Urea ,
= (1.75 IC) x clock cycle time

.
: speedup = I - 75 times

Oi
.
Assume that the CPI for a computer is to and all

memory accesses hit in the cache . If soy. of instructions

are load / stores , miss penalty is 100 cycles , miss rate 51 , how
much faster would the computer be if all instructions were

cache hits?

CPU time = (CPUclock cycle ,
t Mem stall cycles)X clock cycle time

with ideal

cache

= (IC x Cpl t O) x clock cycle time

= IC x clock cycle time

CPU time with

imperfect = (CPU clock cycles t Mem stall cycles) x clock cycle time
cache

men stall -- IC x mem accesses
×
miss rate x miss penalty

cycles instructions

= (C x (It 0.3) XO - 05 x 100

= IC X 6.5

CPU time = (IC X l t IC x 6.5) X clock cycle time

= 7-5 x IC x clock cycle time

speedup a 7-5 times

AVERAGE MEMORY ACCESS TIME

→
constant

additional cc if

i miss incurred

AMAT = Hit time + miss rate x miss penalty

hit time

~ bus
j

width
c-

c s

C 3

bus c-

cpu
width cacheI

miss main

penalty : memory
affected by

° Reduce hit time
bus width

. Reduce miss rate
• Reduce miss penalty

. Miss penalty depends on bus width

Q: A certain processor uses fully associative cache of size 16 KB
.

Cache block size is 16 bytes . Assume byte address ible main

memory ,
32-bit addressing . Tag

-

- ? Index : ?

no .
of blocks I 16×210 =

2
"

blocks

16

words / block = 16 words = 2
"

words (block

tag = 28 bits

index (block) = O bits

Q '

- The width of physical address is 40 bits
.

Width of tag field in

512 KB 8 -way associative cache is ?

Assume block size : 32 bytes

(9

no . of sets = 512×210
= 2- = 2

"

sets

32×8 28

size of block = 32 bytes = 25 bytes

- : tag bits
-

- 40 -Cil -157=24 bits

O : consider a 4 WSA cache
,
128 lines

,
line size 64 words

,

Mem address 20 bits . Tag. ? Line = ? Word = ?

5

no - of sets = 121 = 2

4

set no = 5 bits

line size = 64 words = 2b bytes

line bits = 6

i. tag bits = 9

Consider a fully associative mapped cache of
size 16 KB with block size 256 bytes. The size
of main memory is 128 KB. Find Number of bits
in tag

Consider a 2-way set associative cache of size
16 KB with block size 256 bytes. The size of
main memory is 128 KB. Find Number of bits in
tag

Q :

cache size : 16 KB = 24×2
"

= 214 bytes

block size = 256 bytes = 28 bytes

main memory = 128 KB = 27×210=2" bytes

i . addressing = 17 bits

fully associative

tag block

offset

block offset = 8 bits

i. tag -

- 9 bits

Q .

cache size = lo KB = 2
"

bytes
block size = 28 bytes

9
Set size = 2 bytes

no of sets = 2¥ = 25 bytes

-

'

.
set bits -

- 5 bits

block offset = 8 bits (size of block)

main memory = 128 KB = 27×210--2 " bytes

= 17 bit addressing

i - tag
-

- 17 - (8-15) = 4 bits

tag
set

block

offset

4 5 8

